
Intel Architecture Software Developer’s Manual 55-299

S

S 55

55.1 SAHF—Store AH into Flags

Description
Loads the SF, ZF, AF, PF, and CF flags of the EFLAGS register with values from the corresponding
bits in the AH register (bits 7, 6, 4, 2, and 0, respectively). Bits 1, 3, and 5 of register AH are
ignored; the corresponding reserved bits (1, 3, and 5) in the EFLAGS register remain as shown in
the “Operation” section below.

Operation
EFLAGS(SF:ZF:0:AF:0:PF:1:CF) ← AH;

Flags Affected
The SF, ZF, AF, PF, and CF flags are loaded with values from the AH register. Bits 1, 3, and 5 of
the EFLAGS register are unaffected, with the values remaining 1, 0, and 0, respectively.

Exceptions (All Operating Modes)
None.

55.2 SAL/SAR/SHL/SHR—Shift

Opcode Instruction Clocks Description

9E SAHF 2 Loads SF, ZF, AF, PF, and CF from AH into
EFLAGS register

Opcode Instruction Description

D0 /4 SAL r/m8,1 Multiply r/m8 by 2, once

D2 /4 SAL r/m8,CL Multiply r/m8 by 2, CL times

C0 /4 ib SAL r/m8,imm8 Multiply r/m8 by 2, imm8 times

D1 /4 SAL r/m16,1 Multiply r/m16 by 2, once

D3 /4 SAL r/m16,CL Multiply r/m16 by 2, CL times

C1 /4 ib SAL r/m16,imm8 Multiply r/m16 by 2, imm8 times

D1 /4 SAL r/m32,1 Multiply r/m32 by 2, once

D3 /4 SAL r/m32,CL Multiply r/m32 by 2, CL times

C1 /4 ib SAL r/m32,imm8 Multiply r/m32 by 2, imm8 times

D0 /7 SAR r/m8,1 Signed divide* r/m8 by 2, once

D2 /7 SAR r/m8,CL Signed divide* r/m8 by 2, CL times

C0 /7 ib SAR r/m8,imm8 Signed divide* r/m8 by 2, imm8 times

D1 /7 SAR r/m16,1 Signed divide* r/m16 by 2, once

D3 /7 SAR r/m16,CL Signed divide* r/m16 by 2, CL times

55-300 Intel Architecture Software Developer’s Manual

S

NOTE: *Not the same form of division as IDIV; rounding is toward negative infinity.

Description
Shifts the bits in the first operand (destination operand) to the left or right by the number of bits
specified in the second operand (count operand). Bits shifted beyond the destination operand
boundary are first shifted into the CF flag, then discarded. At the end of the shift operation, the CF
flag contains the last bit shifted out of the destination operand.

The destination operand can be a register or a memory location. The count operand can be an
immediate value or register CL. The count is masked to 5 bits, which limits the count range to 0 to
31. A special opcode encoding is provided for a count of 1.

The shift arithmetic left (SAL) and shift logical left (SHL) instructions perform the same operation;
they shift the bits in the destination operand to the left (toward more significant bit locations). For
each shift count, the most significant bit of the destination operand is shifted into the CF flag, and
the least significant bit is cleared (see “SHL/SAL Instruction Operation”).

The shift arithmetic right (SAR) and shift logical right (SHR) instructions shift the bits of the
destination operand to the right (toward less significant bit locations). For each shift count, the least
significant bit of the destination operand is shifted into the CF flag, and the most significant bit is
either set or cleared depending on the instruction type. The SHR instruction clears the most
significant bit (see“SHR Instruction Operation”); the SAR instruction sets or clears the most
significant bit to correspond to the sign (most significant bit) of the original value in the destination
operand. In effect, the SAR instruction fills the empty bit position’s shifted value with the sign of
the unshifted value (see “SAR Instruction Operation”).

The SAR and SHR instructions can be used to perform signed or unsigned division, respectively, of
the destination operand by powers of 2. For example, using the SAR instruction to shift a signed
integer 1 bit to the right divides the value by 2.

C1 /7 ib SAR r/m16,imm8 Signed divide* r/m16 by 2, imm8 times

D1 /7 SAR r/m32,1 Signed divide* r/m32 by 2, once

D3 /7 SAR r/m32,CL Signed divide* r/m32 by 2, CL times

C1 /7 ib SAR r/m32,imm8 Signed divide* r/m32 by 2, imm8 times

D0 /4 SHL r/m8,1 Multiply r/m8 by 2, once

D2 /4 SHL r/m8,CL Multiply r/m8 by 2, CL times

C0 /4 ib SHL r/m8,imm8 Multiply r/m8 by 2, imm8 times

D1 /4 SHL r/m16,1 Multiply r/m16 by 2, once

D3 /4 SHL r/m16,CL Multiply r/m16 by 2, CL times

C1 /4 ib SHL r/m16,imm8 Multiply r/m16 by 2, imm8 times

D1 /4 SHL r/m32,1 Multiply r/m32 by 2, once

D3 /4 SHL r/m32,CL Multiply r/m32 by 2, CL times

C1 /4 ib SHL r/m32,imm8 Multiply r/m32 by 2, imm8 times

D0 /5 SHR r/m8,1 Unsigned divide r/m8 by 2, once

D2 /5 SHR r/m8,CL Unsigned divide r/m8 by 2, CL times

C0 /5 ib SHR r/m8,imm8 Unsigned divide r/m8 by 2, imm8 times

D1 /5 SHR r/m16,1 Unsigned divide r/m16 by 2, once

D3 /5 SHR r/m16,CL Unsigned divide r/m16 by 2, CL times

C1 /5 ib SHR r/m16,imm8 Unsigned divide r/m16 by 2, imm8 times

D1 /5 SHR r/m32,1 Unsigned divide r/m32 by 2, once

D3 /5 SHR r/m32,CL Unsigned divide r/m32 by 2, CL times

C1 /5 ib SHR r/m32,imm8 Unsigned divide r/m32 by 2, imm8 times

Intel Architecture Software Developer’s Manual 55-301

S

Using the SAR instruction to perform a division operation does not produce the same result as the
IDIV instruction. The quotient from the IDIV instruction is rounded toward zero, whereas the
“quotient” of the SAR instruction is rounded toward negative infinity. This difference is apparent
only for negative numbers. For example, when the IDIV instruction is used to divide -9 by 4, the
result is -2 with a remainder of -1. If the SAR instruction is used to shift -9 right by two bits, the
result is -3 and the “remainder” is +3; however, the SAR instruction stores only the most
significant bit of the remainder (in the CF flag).

The OF flag is affected only on 1-bit shifts. For left shifts, the OF flag is cleared to 0 if the most-
significant bit of the result is the same as the CF flag (that is, the top two bits of the original
operand were the same); otherwise, it is set to 1. For the SAR instruction, the OF flag is cleared for
all 1-bit shifts. For the SHR instruction, the OF flag is set to the most-significant bit of the original
operand.

Intel Architecture Compatibility
The 8086 does not mask the shift count. However, all other Intel Architecture processors (starting
with the Intel 286 processor) do mask the shift count to 5 bits, resulting in a maximum count of 31.
This masking is done in all operating modes (including the virtual-8086 mode) to reduce the
maximum execution time of the instructions.

Operation
tempCOUNT ← (COUNT AND 1FH);
tempDEST ← DEST;
WHILE (tempCOUNT ≠ 0)
DO

IF instruction is SAL or SHL
THEN

CF ← MSB(DEST);
ELSE (* instruction is SAR or SHR *)

CF ← LSB(DEST);
FI;
IF instruction is SAL or SHL

THEN
DEST ← DEST ∗ 2;

ELSE
IF instruction is SAR

THEN
DEST ← DEST / 2 (*Signed divide, rounding toward negative infinity*);

ELSE (* instruction is SHR *)
DEST ← DEST / 2 ; (* Unsigned divide *);

FI;
FI;
tempCOUNT ← tempCOUNT – 1;

OD;
(* Determine overflow for the various instructions *)
IF COUNT = 1

THEN
IF instruction is SAL or SHL

THEN
OF ← MSB(DEST) XOR CF;

ELSE
IF instruction is SAR

THEN
OF ← 0;

ELSE (* instruction is SHR *)
OF ← MSB(tempDEST);

FI;
FI;

ELSE IF COUNT = 0
THEN

All flags remain unchanged;
ELSE (* COUNT neither 1 or 0 *)

OF ← undefined;
FI;

FI;

55-302 Intel Architecture Software Developer’s Manual

S

Flags Affected
The CF flag contains the value of the last bit shifted out of the destination operand; it is undefined
for SHL and SHR instructions where the count is greater than or equal to the size (in bits) of the
destination operand. The OF flag is affected only for 1-bit shifts (see “Description” above);
otherwise, it is undefined. The SF, ZF, and PF flags are set according to the result. If the count is 0,
the flags are not affected. For a non-zero count, the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

55.3 SBB—Integer Subtraction with Borrow

Opcode Instruction Description

1C ib SBB AL,imm8 Subtract with borrow imm8 from AL

1D iw SBB AX,imm16 Subtract with borrow imm16 from AX

1D id SBB EAX,imm32 Subtract with borrow imm32 from EAX

80 /3 ib SBB r/m8,imm8 Subtract with borrow imm8 from r/m8

81 /3 iw SBB r/m16,imm16 Subtract with borrow imm16 from r/m16

81 /3 id SBB r/m32,imm32 Subtract with borrow imm32 from r/m32

83 /3 ib SBB r/m16,imm8 Subtract with borrow sign-extended imm8 from r/m16

83 /3 ib SBB r/m32,imm8 Subtract with borrow sign-extended imm8 from r/m32

18 /r SBB r/m8,r8 Subtract with borrow r8 from r/m8

19 /r SBB r/m16,r16 Subtract with borrow r16 from r/m16

Intel Architecture Software Developer’s Manual 55-303

S

Description
Adds the source operand (second operand) and the carry (CF) flag, and subtracts the result from the
destination operand (first operand). The result of the subtraction is stored in the destination
operand. The destination operand can be a register or a memory location; the source operand can be
an immediate, a register, or a memory location. (However, two memory operands cannot be used in
one instruction.) The state of the CF flag represents a borrow from a previous subtraction.

When an immediate value is used as an operand, it is sign-extended to the length of the destination
operand format.

The SBB instruction does not distinguish between signed or unsigned operands. Instead, the
processor evaluates the result for both data types and sets the OF and CF flags to indicate a borrow
in the signed or unsigned result, respectively. The SF flag indicates the sign of the signed result.

The SBB instruction is usually executed as part of a multibyte or multiword subtraction in which a
SUB instruction is followed by a SBB instruction.

Operation
DEST ← DEST – (SRC + CF);

Flags Affected
The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

19 /r SBB r/m32,r32 Subtract with borrow r32 from r/m32

1A /r SBB r8,r/m8 Subtract with borrow r/m8 from r8

1B /r SBB r16,r/m16 Subtract with borrow r/m16 from r16

1B /r SBB r32,r/m32 Subtract with borrow r/m32 from r32

55-304 Intel Architecture Software Developer’s Manual

S

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

55.4 SCAS/SCASB/SCASW/SCASD—Scan String

Description
Compares the byte, word, or double word specified with the memory operand with the value in the
AL, AX, or EAX register, and sets the status flags in the EFLAGS register according to the results.
The memory operand address is read from either the ES:EDI or the ES:DI registers (depending on
the address-size attribute of the instruction, 32 or 16, respectively). The ES segment cannot be
overridden with a segment override prefix.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands” form
and the “no-operands” form. The explicit-operand form (specified with the SCAS mnemonic)
allows the memory operand to be specified explicitly. Here, the memory operand should be a
symbol that indicates the size and location of the operand value. The register operand is then
automatically selected to match the size of the memory operand (the AL register for byte
comparisons, AX for word comparisons, and EAX for doubleword comparisons). This explicit-
operand form is provided to allow documentation; however, note that the documentation provided
by this form can be misleading. That is, the memory operand symbol must specify the correct type
(size) of the operand (byte, word, or doubleword), but it does not have to specify the correct
location. The location is always specified by the ES:(E)DI registers, which must be loaded
correctly before the compare string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
SCAS instructions. Here also ES:(E)DI is assumed to be the memory operand and the AL, AX, or
EAX register is assumed to be the register operand. The size of the two operands is selected with
the mnemonic: SCASB (byte comparison), SCASW (word comparison), or SCASD (doubleword
comparison).

After the comparison, the (E)DI register is incremented or decremented automatically according to
the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the (E)DI register is
incremented; if the DF flag is 1, the (E)DI register is decremented.) The (E)DI register is
incremented or decremented by 1 for byte operations, by 2 for word operations, or by 4 for
doubleword operations.

Opcode Instruction Description

AE SCAS m8 Compare AL with byte at ES:(E)DI and set status flags

AF SCAS m16 Compare AX with word at ES:(E)DI and set status flags

AF SCAS m32 Compare EAX with doubleword at ES(E)DI and set status flags

AE SCASB Compare AL with byte at ES:(E)DI and set status flags

AF SCASW Compare AX with word at ES:(E)DI and set status flags

AF SCASD Compare EAX with doubleword at ES:(E)DI and set status flags

Intel Architecture Software Developer’s Manual 55-305

S

The SCAS, SCASB, SCASW, and SCASD instructions can be preceded by the REP prefix for
block comparisons of ECX bytes, words, or doublewords. More often, however, these instructions
will be used in a LOOP construct that takes some action based on the setting of the status flags
before the next comparison is made. See “REP/REPE/REPZ/REPNE /REPNZ—Repeat String
Operation Prefix” in this chapter for a description of the REP prefix.

Operation
IF (byte cmparison)

THEN
temp ← AL − SRC;
SetStatusFlags(temp);

THEN IF DF = 0
THEN (E)DI ← (E)DI + 1;
ELSE (E)DI ← (E)DI – 1;

FI;
ELSE IF (word comparison)

THEN
temp ← AX − SRC;
SetStatusFlags(temp)

THEN IF DF = 0
THEN (E)DI ← (E)DI + 2;
ELSE (E)DI ← (E)DI – 2;

FI;
ELSE (* doubleword comparison *)

temp ← EAX − SRC;
SetStatusFlags(temp)

THEN IF DF = 0
THEN (E)DI ← (E)DI + 4;
ELSE (E)DI ← (E)DI – 4;

FI;
FI;

FI;

Flags Affected
The OF, SF, ZF, AF, PF, and CF flags are set according to the temporary result of the comparison.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the limit of the ES segment.

If the ES register contains a null segment selector.

If an illegal memory operand effective address in the ES segment is given.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

55-306 Intel Architecture Software Developer’s Manual

S

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

55.5 SETcc—Set Byte on Condition

Description
Set the destination operand to 0 or 1 depending on the settings of the status flags (CF, SF, OF, ZF,
and PF) in the EFLAGS register. The destination operand points to a byte register or a byte in
memory. The condition code suffix (cc) indicates the condition being tested for.

The terms “above” and “below” are associated with the CF flag and refer to the relationship
between two unsigned integer values. The terms “greater” and “less” are associated with the SF
and OF flags and refer to the relationship between two signed integer values.

Opcode Instruction Description

0F 97 SETA r/m8 Set byte if above (CF=0 and ZF=0)

0F 93 SETAE r/m8 Set byte if above or equal (CF=0)

0F 92 SETB r/m8 Set byte if below (CF=1)

0F 96 SETBE r/m8 Set byte if below or equal (CF=1 or ZF=1)

0F 92 SETC r/m8 Set if carry (CF=1)

0F 94 SETE r/m8 Set byte if equal (ZF=1)

0F 9F SETG r/m8 Set byte if greater (ZF=0 and SF=OF)

0F 9D SETGE r/m8 Set byte if greater or equal (SF=OF)

0F 9C SETL r/m8 Set byte if less (SF<>OF)

0F 9E SETLE r/m8 Set byte if less or equal (ZF=1 or SF<>OF)

0F 96 SETNA r/m8 Set byte if not above (CF=1 or ZF=1)

0F 92 SETNAE r/m8 Set byte if not above or equal (CF=1)

0F 93 SETNB r/m8 Set byte if not below (CF=0)

0F 97 SETNBE r/m8 Set byte if not below or equal (CF=0 and ZF=0)

0F 93 SETNC r/m8 Set byte if not carry (CF=0)

0F 95 SETNE r/m8 Set byte if not equal (ZF=0)

0F 9E SETNG r/m8 Set byte if not greater (ZF=1 or SF<>OF)

0F 9C SETNGE r/m8 Set if not greater or equal (SF<>OF)

0F 9D SETNL r/m8 Set byte if not less (SF=OF)

0F 9F SETNLE r/m8 Set byte if not less or equal (ZF=0 and SF=OF)

0F 91 SETNO r/m8 Set byte if not overflow (OF=0)

0F 9B SETNP r/m8 Set byte if not parity (PF=0)

0F 99 SETNS r/m8 Set byte if not sign (SF=0)

0F 95 SETNZ r/m8 Set byte if not zero (ZF=0)

0F 90 SETO r/m8 Set byte if overflow (OF=1)

0F 9A SETP r/m8 Set byte if parity (PF=1)

0F 9A SETPE r/m8 Set byte if parity even (PF=1)

0F 9B SETPO r/m8 Set byte if parity odd (PF=0)

0F 98 SETS r/m8 Set byte if sign (SF=1)

0F 94 SETZ r/m8 Set byte if zero (ZF=1)

Intel Architecture Software Developer’s Manual 55-307

S

Many of the SETcc instruction opcodes have alternate mnemonics. For example, the SETG (set
byte if greater) and SETNLE (set if not less or equal) both have the same opcode and test for the
same condition: ZF equals 0 and SF equals OF. These alternate mnemonics are provided to make
code more intelligible. “EFLAGS Cross-Reference and Condition Codes”, shows the alternate
mnemonics for various test conditions.

Some languages represent a logical one as an integer with all bits set. This representation can be
obtained by choosing the logically opposite condition for the SETcc instruction, then decrementing
the result. For example, to test for overflow, use the SETNO instruction, then decrement the result.

Operation
IF condition

THEN DEST ← 1
ELSE DEST ← 0;

FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

55-308 Intel Architecture Software Developer’s Manual

S

55.6 SGDT/SIDT—Store Global/Interrupt Descriptor Table
Register

Description
Stores the contents of the global descriptor table register (GDTR) or the interrupt descriptor table
register (IDTR) in the destination operand. The destination operand specifies a 6-byte memory
location. If the operand-size attribute is 32 bits, the 16-bit limit field of the register is stored in the
lower 2 bytes of the memory location and the 32-bit base address is stored in the upper 4 bytes. If
the operand-size attribute is 16 bits, the limit is stored in the lower 2 bytes and the 24-bit base
address is stored in the third, fourth, and fifth byte, with the sixth byte filled with 0s.

The SGDT and SIDT instructions are only useful in operating-system software; however, they can
be used in application programs without causing an exception to be generated.

See “LGDT/LIDT—Load Global/Interrupt Descriptor Table Register” in this chapter for
information on loading the GDTR and IDTR.

Intel Architecture Compatibility
The 16-bit forms of the SGDT and SIDT instructions are compatible with the Intel 286 processor,
if the upper 8 bits are not referenced. The Intel 286 processor fills these bits with 1s; the Pentium
Pro, Pentium, Intel486, and Intel386 processors fill these bits with 0s.

Operation
IF instruction is IDTR

THEN
IF OperandSize = 16

THEN
DEST[0:15] ← IDTR(Limit);
DEST[16:39] ← IDTR(Base); (* 24 bits of base address loaded; *)
DEST[40:47] ← 0;

ELSE (* 32-bit Operand Size *)
DEST[0:15] ← IDTR(Limit);
DEST[16:47] ← IDTR(Base); (* full 32-bit base address loaded *)

FI;
ELSE (* instruction is SGDT *)

IF OperandSize = 16
THEN

DEST[0:15] ← GDTR(Limit);
DEST[16:39] ← GDTR(Base); (* 24 bits of base address loaded; *)
DEST[40:47] ← 0;

ELSE (* 32-bit Operand Size *)
DEST[0:15] ← GDTR(Limit);
DEST[16:47] ← GDTR(Base); (* full 32-bit base address loaded *)

FI; FI;

Flags Affected
None.

Protected Mode Exceptions
#UD If the destination operand is a register.

Opcode Instruction Description

0F 01 /0 SGDT m Store GDTR to m

0F 01 /1 SIDT m Store IDTR to m

Intel Architecture Software Developer’s Manual 55-309

S

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when the CPL is 3 and alignment
checking is enabled.

Real-Address Mode Exceptions
#UD If the destination operand is a register.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#UD If the destination operand is a register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when alignment checking is enabled.

55.7 SHL/SHR—Shift Instructions

See entry for SAL/SAR/SHL/SHR—Shift.

55.8 SHLD—Double Precision Shift Left

Opcode Instruction Description

0F A4 SHLD r/m16,r16,imm8 Shift r/m16 to left imm8 places while shifting bits from r16
in from the right

0F A5 SHLD r/m16,r16,CL Shift r/m16 to left CL places while shifting bits from r16 in
from the right

0F A4 SHLD r/m32,r32,imm8 Shift r/m32 to left imm8 places while shifting bits from r32
in from the right

0F A5 SHLD r/m32,r32,CL Shift r/m32 to left CL places while shifting bits from r32 in
from the right

55-310 Intel Architecture Software Developer’s Manual

S

Description
Shifts the first operand (destination operand) to the left the number of bits specified by the third
operand (count operand). The second operand (source operand) provides bits to shift in from the
right (starting with bit 0 of the destination operand). The destination operand can be a register or a
memory location; the source operand is a register. The count operand is an unsigned integer that
can be an immediate byte or the contents of the CL register. Only bits 0 through 4 of the count are
used, which masks the count to a value between 0 and 31. If the count is greater than the operand
size, the result in the destination operand is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination
operand. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is cleared. If the
count operand is 0, the flags are not affected.

The SHLD instruction is useful for multiprecision shifts of 64 bits or more.

Operation
COUNT ← COUNT MOD 32;
SIZE ← OperandSize
IF COUNT = 0

THEN
no operation

ELSE
IF COUNT ≥ SIZE

THEN (* Bad parameters *)
DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;

ELSE (* Perform the shift *)
CF ← BIT[DEST, SIZE – COUNT];
(* Last bit shifted out on exit *)
FOR i ← SIZE – 1 DOWNTO COUNT
DO

Bit(DEST, i) ← Bit(DEST, i – COUNT);
OD;
FOR i ← COUNT – 1 DOWNTO 0
DO

BIT[DEST, i] ← BIT[SRC, i – COUNT + SIZE];
OD;

FI;
FI;

Flags Affected
If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination
operand and the SF, ZF, and PF flags are set according to the value of the result. For a 1-bit shift,
the OF flag is set if a sign change occurred; otherwise, it is cleared. For shifts greater than 1 bit, the
OF flag is undefined. If a shift occurs, the AF flag is undefined. If the count operand is 0, the flags
are not affected. If the count is greater than the operand size, the flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Intel Architecture Software Developer’s Manual 55-311

S

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

55.9 SHRD—Double Precision Shift Right

Description
Shifts the first operand (destination operand) to the right the number of bits specified by the third
operand (count operand). The second operand (source operand) provides bits to shift in from the
left (starting with the most significant bit of the destination operand). The destination operand can
be a register or a memory location; the source operand is a register. The count operand is an
unsigned integer that can be an immediate byte or the contents of the CL register. Only bits 0
through 4 of the count are used, which masks the count to a value between 0 and 31. If the count is
greater than the operand size, the result in the destination operand is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination
operand. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is cleared. If the
count operand is 0, the flags are not affected.

The SHRD instruction is useful for multiprecision shifts of 64 bits or more.

Operation
COUNT ← COUNT MOD 32;
SIZE ← OperandSize
IF COUNT = 0

THEN
no operation

ELSE
IF COUNT ≥ SIZE

THEN (* Bad parameters *)
DEST is undefined;

Opcode Instruction Description

0F AC SHRD r/m16,r16,imm8 Shift r/m16 to right imm8 places while shifting bits from
r16 in from the left

0F AD SHRD r/m16,r16,CL Shift r/m16 to right CL places while shifting bits from r16
in from the left

0F AC SHRD r/m32,r32,imm8 Shift r/m32 to right imm8 places while shifting bits from
r32 in from the left

0F AD SHRD r/m32,r32,CL Shift r/m32 to right CL places while shifting bits from r32
in from the left

55-312 Intel Architecture Software Developer’s Manual

S

CF, OF, SF, ZF, AF, PF are undefined;
ELSE (* Perform the shift *)

CF ← BIT[DEST, COUNT – 1]; (* last bit shifted out on exit *)
FOR i ← 0 TO SIZE – 1 – COUNT

DO
BIT[DEST, i] ← BIT[DEST , i – COUNT];

OD;
FOR i ← SIZE – COUNT TO SIZE – 1

DO
BIT[DEST ,i] ← BIT[inBits,i+COUNT – SIZE];

OD;
FI;

FI;

Flags Affected
If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination
operand and the SF, ZF, and PF flags are set according to the value of the result. For a 1-bit shift,
the OF flag is set if a sign change occurred; otherwise, it is cleared. For shifts greater than 1 bit, the
OF flag is undefined. If a shift occurs, the AF flag is undefined. If the count operand is 0, the flags
are not affected. If the count is greater than the operand size, the flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

55.10 SIDT—Store Interrupt Descriptor Table Register

See entry for SGDT/SIDT—Store Global/Interrupt Descriptor Table Register.

Intel Architecture Software Developer’s Manual 55-313

S

55.11 SLDT—Store Local Descriptor Table Register

Description
Stores the segment selector from the local descriptor table register (LDTR) in the destination
operand. The destination operand can be a general-purpose register or a memory location. The
segment selector stored with this instruction points to the segment descriptor (located in the GDT)
for the current LDT. This instruction can only be executed in protected mode.

When the destination operand is a 32-bit register, the 16-bit segment selector is copied into the
lower-order 16 bits of the register. The high-order 16 bits of the register are cleared to 0s for the
Pentium Pro processor and are undefined for Pentium, Intel486, and Intel386 processors. When the
destination operand is a memory location, the segment selector is written to memory as a 16-bit
quantity, regardless of the operand size.

The SLDT instruction is only useful in operating-system software; however, it can be used in
application programs.

Operation
DEST ← LDTR(SegmentSelector);

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#UD The SLDT instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The SLDT instruction is not recognized in virtual-8086 mode.

Opcode Instruction Description

0F 00 /0 SLDT r/m16 Stores segment selector from LDTR in r/m16

0F 00 /0 SLDT r/m32 Store segment selector from LDTR in low-order 16 bits of
r/m32

55-314 Intel Architecture Software Developer’s Manual

S

55.12 SMSW—Store Machine Status Word

Description
Stores the machine status word (bits 0 through 15 of control register CR0) into the destination
operand. The destination operand can be a 16-bit general-purpose register or a memory location.

When the destination operand is a 32-bit register, the low-order 16 bits of register CR0 are copied
into the low-order 16 bits of the register and the upper 16 bits of the register are undefined. When
the destination operand is a memory location, the low-order 16 bits of register CR0 are written to
memory as a 16-bit quantity, regardless of the operand size.

The SMSW instruction is only useful in operating-system software; however, it is not a privileged
instruction and can be used in application programs.

This instruction is provided for compatibility with the Intel 286 processor. Programs and
procedures intended to run on the Pentium Pro, Pentium, Intel486, and Intel386 processors should
use the MOV (control registers) instruction to load the machine status word.

Operation
DEST ← CR0[15:0]; (* Machine status word *);

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Opcode Instruction Description

0F 01 /4 SMSW r/m16 Store machine status word to r/m16

0F 01 /4 SMSW r32/m16 Store machine status word in low-order 16 bits of r32/m16;
high-order 16 bits of r32 are undefined

Intel Architecture Software Developer’s Manual 55-315

S

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

55.13 STC—Set Carry Flag

Description
Sets the CF flag in the EFLAGS register.

Operation
CF ← 1;

Flags Affected
The CF flag is set. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
None.

55.14 STD—Set Direction Flag

Description
Sets the DF flag in the EFLAGS register. When the DF flag is set to 1, string operations decrement
the index registers (ESI and/or EDI).

Operation
DF ← 1;

Flags Affected
The DF flag is set. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Opcode Instruction Description

F9 STC Set CF flag

Opcode Instruction Description

FD STD Set DF flag

55-316 Intel Architecture Software Developer’s Manual

S

Operation
DF ← 1;

Exceptions (All Operating Modes)
None.

55.15 STI—Set Interrupt Flag

Description
Sets the interrupt flag (IF) in the EFLAGS register. After the IF flag is set, the processor begins
responding to external, maskable interrupts after the next instruction is executed. The delayed
effect of this instruction is provided to allow interrupts to be enabled just before returning from a
procedure (or subroutine). For instance, if an STI instruction is followed by an RET instruction, the
RET instruction is allowed to execute before external interrupts are recognized1. This behavior
allows external interrupts to be disabled at the beginning of a procedure and enabled again at the
end of the procedure. If the STI instruction is followed by a CLI instruction (which clears the IF
flag), the effect of the STI instruction is negated.

The IF flag and the STI and CLI instructions have no affect on the generation of exceptions and
NMI interrupts.

The following decision table indicates the action of the STI instruction (bottom of the table)
depending on the processor’s mode of operation and the CPL and IOPL of the currently running
program or procedure (top of the table).

NOTES:
1. XDon’t care.
2. NAction in Column 1 not taken.
3. YAction in Column 1 taken.

Opcode Instruction Description

FB STI Set interrupt flag; external, maskable interrupts enabled
at the end of the next instruction

1. Note that in a sequence of instructions that individually delay interrupts past the following instruction, only the first instruction in the
sequence is guaranteed to delay the interrupt, but subsequent interrupt-delaying instructions may not delay the interrupt. Thus , in the
following instruction sequence:
 STI
MOV SS, AX
MOV ESP, EBP
interrupts may be recognized before MOV ESP, EBP executes, even though MOV SS, AX normally delays interrupts for one instruction.

PE = 0 1 1 1

VM = X 0 0 1

CPL X ≤ IOPL > IOPL =3

IOPL X X X =3

IF ← 1 Y Y N Y

#GP(0) N N Y N

Intel Architecture Software Developer’s Manual 55-317

S

Operation
IF PE=0 (* Executing in real-address mode *)

THEN
IF ← 1; (* Set Interrupt Flag *)

ELSE (* Executing in protected mode or virtual-8086 mode *)
IF VM=0 (* Executing in protected mode*)

THEN
IF IOPL = 3

THEN
IF ← 1;

ELSE
IF CPL ≤ IOPL

THEN
IF ← 1;

 ELSE
#GP(0);

FI;
FI;

ELSE (* Executing in Virtual-8086 mode *)
#GP(0); (* Trap to virtual-8086 monitor *)

FI;
FI;

Flags Affected
The IF flag is set to 1.

Protected Mode Exceptions
#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current program

or procedure.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current program

or procedure.

55.16 STOS/STOSB/STOSW/STOSD—Store String

Description
Stores a byte, word, or doubleword from the AL, AX, or EAX register, respectively, into the
destination operand. The destination operand is a memory location, the address of which is read
from either the ES:EDI or the ES:DI registers (depending on the address-size attribute of the
instruction, 32 or 16, respectively). The ES segment cannot be overridden with a segment override
prefix.

Opcode Instruction Description

AA STOS m8 Store AL at address ES:(E)DI

AB STOS m16 Store AX at address ES:(E)DI

AB STOS m32 Store EAX at address ES:(E)DI

AA STOSB Store AL at address ES:(E)DI

AB STOSW Store AX at address ES:(E)DI

AB STOSD Store EAX at address ES:(E)DI

55-318 Intel Architecture Software Developer’s Manual

S

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands” form
and the “no-operands” form. The explicit-operands form (specified with the STOS mnemonic)
allows the destination operand to be specified explicitly. Here, the destination operand should be a
symbol that indicates the size and location of the destination value. The source operand is then
automatically selected to match the size of the destination operand (the AL register for byte
operands, AX for word operands, and EAX for doubleword operands). This explicit-operands form
is provided to allow documentation; however, note that the documentation provided by this form
can be misleading. That is, the destination operand symbol must specify the correct type (size) of
the operand (byte, word, or doubleword), but it does not have to specify the correct location. The
location is always specified by the ES:(E)DI registers, which must be loaded correctly before the
store string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
STOS instructions. Here also ES:(E)DI is assumed to be the destination operand and the AL, AX,
or EAX register is assumed to be the source operand. The size of the destination and source
operands is selected with the mnemonic: STOSB (byte read from register AL), STOSW (word
from AX), or STOSD (doubleword from EAX).

After the byte, word, or doubleword is transferred from the AL, AX, or EAX register to the
memory location, the (E)DI register is incremented or decremented automatically according to the
setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the (E)DI register is
incremented; if the DF flag is 1, the (E)DI register is decremented.) The (E)DI register is
incremented or decremented by 1 for byte operations, by 2 for word operations, or by 4 for
doubleword operations.

The STOS, STOSB, STOSW, and STOSD instructions can be preceded by the REP prefix for block
loads of ECX bytes, words, or doublewords. More often, however, these instructions are used
within a LOOP construct because data needs to be moved into the AL, AX, or EAX register before
it can be stored. See “REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix” in this
chapter for a description of the REP prefix.

Operation
IF (byte store)

THEN
DEST ← AL;

THEN IF DF = 0
THEN (E)DI ← (E)DI + 1;
ELSE (E)DI ← (E)DI – 1;

FI;
ELSE IF (word store)

THEN
DEST ← AX;

THEN IF DF = 0
THEN (E)DI ← (E)DI + 2;
ELSE (E)DI ← (E)DI – 2;

FI;
ELSE (* doubleword store *)

DEST ← EAX;
THEN IF DF = 0

THEN (E)DI ← (E)DI + 4;
ELSE (E)DI ← (E)DI – 4;

FI;
FI;

FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the destination is located in a nonwritable segment.

Intel Architecture Software Developer’s Manual 55-319

S

If a memory operand effective address is outside the limit of the ES segment.

If the ES register contains a null segment selector.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the ES segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the ES segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

55.17 STR—Store Task Register

Description
Stores the segment selector from the task register (TR) in the destination operand. The destination
operand can be a general-purpose register or a memory location. The segment selector stored with
this instruction points to the task state segment (TSS) for the currently running task.

When the destination operand is a 32-bit register, the 16-bit segment selector is copied into the
lower 16 bits of the register and the upper 16 bits of the register are cleared to 0s. When the
destination operand is a memory location, the segment selector is written to memory as a 16-bit
quantity, regardless of operand size.

The STR instruction is useful only in operating-system software. It can only be executed in
protected mode.

Operation
DEST ← TR(SegmentSelector);

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the destination is a memory operand that is located in a nonwritable segment

or if the effective address is outside the CS, DS, ES, FS, or GS segment limit.

Opcode Instruction Description

0F 00 /1 STR r/m16 Stores segment selector from TR in r/m16

55-320 Intel Architecture Software Developer’s Manual

S

If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#UD The STR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The STR instruction is not recognized in virtual-8086 mode.

55.18 SUB—Subtract

Description
Subtracts the second operand (source operand) from the first operand (destination operand) and
stores the result in the destination operand. The destination operand can be a register or a memory
location; the source operand can be an immediate, register, or memory location. (However, two
memory operands cannot be used in one instruction.) When an immediate value is used as an
operand, it is sign-extended to the length of the destination operand format.

The SUB instruction does not distinguish between signed or unsigned operands. Instead, the
processor evaluates the result for both data types and sets the OF and CF flags to indicate a borrow
in the signed or unsigned result, respectively. The SF flag indicates the sign of the signed result.

Operation
DEST ← DEST – SRC;

Opcode Instruction Description

2C ib SUB AL,imm8 Subtract imm8 from AL

2D iw SUB AX,imm16 Subtract imm16 from AX

2D id SUB EAX,imm32 Subtract imm32 from EAX

80 /5 ib SUB r/m8,imm8 Subtract imm8 from r/m8

81 /5 iw SUB r/m16,imm16 Subtract imm16 from r/m16

81 /5 id SUB r/m32,imm32 Subtract imm32 from r/m32

83 /5 ib SUB r/m16,imm8 Subtract sign-extended imm8 from r/m16

83 /5 ib SUB r/m32,imm8 Subtract sign-extended imm8 from r/m32

28 /r SUB r/m8,r8 Subtract r8 from r/m8

29 /r SUB r/m16,r16 Subtract r16 from r/m16

29 /r SUB r/m32,r32 Subtract r32 from r/m32

2A /r SUB r8,r/m8 Subtract r/m8 from r8

2B /r SUB r16,r/m16 Subtract r/m16 from r16

2B /r SUB r32,r/m32 Subtract r/m32 from r32

Intel Architecture Software Developer’s Manual 55-321

S

Flags Affected
The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

55.19 SYSENTER—Fast Transition to System Call Entry
Point

Description
The SYSENTER instruction is part of the “Fast System Call” facility introduced on the Pentium®
II processor. The SYSENTER instruction is optimized to provide the maximum performance for
protection ring transitions to CPL = 0.

The SYSENTER instruction sets the following registers according to values specified by the
operating system in certain model specific registers.

CS register set to the value of (SYSENTER_CS_MSR)

Opcode Instruction Description

0F, 34 SYSENTER Transition to System Call Entry Point

55-322 Intel Architecture Software Developer’s Manual

S

EIP register set to the value of (SYSENTER_EIP_MSR)

SS regisster set to the sum of (8 plus the value in SYSENTER_CS_MSR)

ESP register set to the value of (SYSENTER_ESP_MSR)

The processor does not save user stack or return address information, and does not save any
registers.

The SYSENTER and SYSEXIT instructions do not constitute a call/return pair; therefore, the
system call “stub” routines executed by user code (typically in shared libraries or DLLs) must
perform the required register state save to create a system call/return pair.

The SYSENTER instruction always transfers to a flat protected-mode kernel at CPL = 0.
SYSENTER can be invoked from all modes except real mode. The instruction requires that the
following conditions are met by the operating system:

• The CS selector for the target ring 0 code segment is 32 bits, mapped as a flat 0-4 GB address
space with execute and read permissions

• The SS selector for the target ring 0 stack segment is 32 bits, mapped as a flat 0-4 GB address
space with read, write, and accessed permissions. This selector (Target Ring 0 SS Selector) is
assigned the value of the new (CS selector + 8).

An operating system provides values for CS, EIP, SS, and ESP for the ring 0 entry point through
use of model specific registers within the processor. These registers can be read from and written to
by using the RDMSR and WRMSR instructions. The register addresses are defined to remain fixed
at the following addresses on future processors that provide support for this feature.

The presence of this facility is indicated by the SYSENTER Present (SEP) bit 11 of CPUID. An
operating system that detects the presence of the SEP bit must also qualify the processor family and
model to ensure that the SYSENTER/SYSEXIT instructions are actually present. For example:
If (CPUID SEP bit is set) {
If (Family == 6) AND (Model < 3) AND (Stepping < 3) {

THEN
Fast System Call NOT supported
}

Else Fast System Call is supported
}

The Pentium Pro processor (Model = 1) returns a set SEP CPUID feature bit, but does not support
the SYSENTER/SYSEXIT instructions.

Operation

SYSENTER
IF CR0.PE == 0 THEN #GP(0)
IF SYSENTER_CS_MSR == 0 THEN #GP(0)

EFLAGS.VM := 0 // Prevent VM86 mode
EFLAGS.IF := 0 // Mask interrupts

CS.SEL := SYSENTER_CS_MSR // Operating system provides CS

// Set rest of CS to a fixed value
CS.SEL.CPL := 0 // CPL = 0
CS.SEL.BASE := 0 // Flat segment

Name Description Address

SYSENTER_CS_MSR Target Ring 0 CS Selector 174h

SYSENTER_ESP_MSR Target Ring 0 ESP 175h

SYSENTER_EIP_MSR Target Ring 0 Entry Point EIP 176h

Intel Architecture Software Developer’s Manual 55-323

S

CS.SEL.LIMIT := 0xFFFF // 4G limit
CS.SEL.G := 1 // 4 KB granularity
CS.SEL.S := 1
CS.SEL.TYPE_xCRA := 1011 // Execute + Read, Accessed
CS.SEL.D := 1 // 32 bit code
CS.SEL.DPL := 0
CS.SEL.RPL := 0
CS.SEL.P := 1
SS.SEL := CS.SEL+8

// Set rest of SS to a fixed value
SS.SEL.BASE := 0 // Flat segment
SS.SEL.LIMIT := 0xFFFF // 4G limit
SS.SEL.G := 1 // 4 KB granularity
SS.SEL.S := 1
SS.SEL.TYPE_xCRA := 0011 // Read/Write, Accessed
SS.SEL.D := 1 // 32 bit stack
SS.SEL.DPL := 0
SS.SEL.RPL := 0
SS.SEL.P := 1

ESP := SYSENTER_ESP_MSR
EIP := SYSENTER_EIP_MSR

Exceptions
#GP(0) If SYSENTER_CS_MSR contains zero.

Numeric Exceptions
None.

Real-Address Mode Exceptions
#GP(0) If protected mode is not enabled.

55.20 SYSEXIT—Fast Transition from System Call Entry
Point

Description
The SYSEXIT instruction is part of the “Fast System Call” facility introduced on the Pentium II
processor. The SYSEXIT instruction is optimized to provide the maximum performance for
protection ring transitions from CPL = 0 to CPL = 3.

The SYSEXIT instruction sets the following registers according to values specified by the
operating system in certain model specific or general purpose registers.

CS register set to the sum of (16 plus the value in SYSENTER_CS_MSR)

EIP register set to the value contained in the EDX register

SS register set to the sum of (24 plus the value in SYSENTER_CS_MSR)

ESP register set to the value contained in the ECX register

The processor does not save kernel stack or return address information, and does not save any
registers.

Opcode Instruction Description

0F, 35 SYSEXIT Transition from System Call Entry Point

55-324 Intel Architecture Software Developer’s Manual

S

The SYSENTER and SYSEXIT instructions do not constitute a call/return pair; therefore, the
system call “stub” routines executed by user code (typically in shared libraries or DLLs) must
perform the required register state restore to create a system call/return pair.

The SYSEXIT instruction always transfers to a flat protected-mode user at CPL = 3. SYSEXIT can
be invoked only from protected mode and CPL = 0. The instruction requires that the following
conditions are met by the operating system:

• The CS selector for the target ring 3 code segment is 32 bits, mapped as a flat 0-4 GB address
space with execute, read, and nonconforming permissions.

• The SS selector for the target ring 3 stack segment is 32 bits, mapped as a flat 0-4 GB address
space with expand-up, read, and write permissions.

An operating system must set the following:

The presence of this facility is indicated by the SYSENTER Present (SEP) bit 11 of CPUID. An
operating system that detects the presence of the SEP bit must also qualify the processor family and
model to ensure that the SYSENTER/SYSEXIT instructions are actually present, as described for
the SYSENTER instruction. The Pentium Pro processor (Model = 1) returns a set SEP CPUID
feature bit, but does not support the SYSENTER/SYSEXIT instructions.

Operation
SYSEXIT

IF SYSENTER_CS_MSR == 0 THEN #GP(0)
IF CR0.PE == 0 THEN #GP(0)
IF CPL <> 0 THEN #GP(0)

// Changing CS:EIP and SS:ESP is required

CS.SEL := (SYSENTER_CS_MSR + 16) // Selector for return CS
CS.SEL.RPL := 3

// Set rest of CS to a fixed value
CS.SEL.BASE := 0 // Flat segment
CS.SEL.LIMIT := 0xFFFF // 4G limit
CS.SEL.G := 1 // 4 KB granularity
CS.SEL.S := 1
CS.SEL.TYPE_xCRA := 1011 // Execute, Read, Nonconforming Code
CS.SEL.D := 1 // 32 bit code
CS.SEL.DPL := 3
CS.SEL.P := 1

SS.SEL := (SYSENTER_CS_MSR + 24)
SS.SEL.RPL := 3

// Set rest of SS to a fixed value
SS.SEL.BASE := 0 // Flat segment
SS.SEL.LIMIT := 0xFFFF // 4G limit
SS.SEL.G := 1 // 4 KB granularity
SS.SEL.S := 1
SS.SEL.TYPE_xCRA := 0011 // Expand Up, Read/Write, Data
SS.SEL.D := 1 // 32 bit stack
SS.SEL.DPL := 3
SS.SEL.CPL := 3
SS.SEL.P := 1

Name Description

CS Selector The Target Ring 3 CS Selector. This is assigned the sum of (16 + the value
of SYSENTER_CS_MSR).

SS Selector The Target Ring 3 SS Selector. This is assigned the sum of (24 + the value
of SYSENTER_CS_MSR).

EIP Target Ring 3 Return EIP. This is the target entry point, and is assigned the
value contained in the EDX register.

ESP Target Ring 3 Return ESP. This is the target entry point, and is assigned the
value contained in the ECX register.

Intel Architecture Software Developer’s Manual 55-325

S

ESP := ECX
EIP := EDX

Exceptions
#GP(0) If SYSENTER_CS_MSR contains zero.

Numeric Exceptions
None.

Protected-Mode Exceptions
#GP(0) If CPL is nonzero.

Real-Address Mode Exceptions
#GP(0) If protected mode is not enabled.

55-326 Intel Architecture Software Developer’s Manual

S

